

System Engineering and Spacecraft

Henry Heetderks
Space Sciences Laboratory, UCB

The System Engineering Approach

2

- The goal of System Engineering is to develop a set of uniform procedures which effectively apply good engineering practice to large, complicated, or costly systems. The object is to meet needed requirements subject to minimizing cost with a controlled level of risk.
- Design proceeds from the top down
- Higher level requirements drive design at lower levels
- But process is highly iterative; results of analysis at lower levels can force changes at higher levels
- Typically involves multiple trade studies
- **Encompasses all design and engineering on the program**
- Process was begun by the entire science community before SNAP was a project

System Engineering Applied to SNAP

3

Baseline Science

- Want to measure W M, W I, and dark energy
- Results from discussions and interaction with the entire science community

• Science Approach

- Use Standard Candle method to examine 2000 supernova of type Ia
- Measure magnitude and redshift to a few percent accuracy
- Process is lead by SNAP science team with input from entire community
- Subject to trades and wholesale revision of approach
- A key conclusion at this level is that SNAP cannot be done from the ground, but requires a space based telescope

• Instrumentation Approach

- Derive requirements on FOV
- Aperture and time on target
- Resolution, and pointing
- Instrument complement
- Data volume and return
- Trades at this level are still best made by scientists. Should maximize exposure and number of scientists involved in early planning.

System Engineering Applied to SNAP

Mission Design

- Model observatory size and mass by scaling similar programs
- Make estimates of instrument requirements
- Do orbit trade studies and estimate launch vehicle requirements
- Make trade studies of down link options
- Develop preliminary requirements on spacecraft
- Activity at this point is still being lead by the science team, but with increasing engineering input

Observatory Design

- This activity is lead by engineering staff
- The process starts with a review of the science requirements
 - Pointing
 - FOV, Aperture
 - Resolution
 - Instruments size, mass, power, and data requirements
- Then a first set of derived requirements are developed
 - E.g. requirements on the spacecraft

System Engineering Applied to SNAP

5

- Finally a design approach is developed for the observatory
 - Process starts with developing a design for the Optical Telescope Assembly
 - OTA sensitivity calculations drive requirements on the structure and thermal systems
 - A preliminary instrument layout is made
 - Structure design approach
 - Mirror fabrication approach
 - Thermal requirements and thermal control system design
 - Testability requirements are developed
 - Interface Control Documents are prepared and maintained
 - —Mechanical, Optical, Thermal, Electrical
 - Preliminary specifications on spacecraft systems are developed
 - Spacecraft structure is refined
 - Instrument designs and requirements are refined
 - Requirements on the data system are developed
 - Data system is laid out and refined

Status of the Observatory / Mission Design

6

- Orbit trade study completed
 - "Prometheus" orbit selected
 - Analysis shows a Delta III or IV-M can place 2800 kg. in this orbit
- Preliminary Size, Mass, and Power developed
- Preliminary layout of observatory structure generated
- Extensive trade studies of alternative OTA designs done
- Design and trade studies of the instrument complement
- Result of LOI is to get estimates from industry of the spacecraft cost
- Strawman spacecraft was presented at the last review

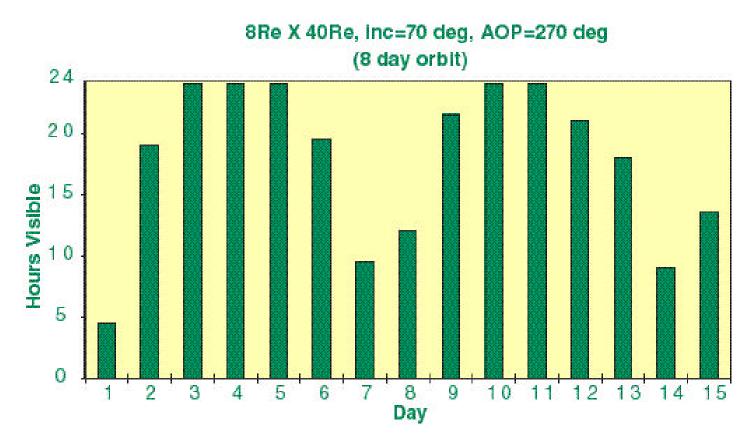
Orbit Trade-Study

Feasibility & Trade-Study

Orbit	Radiation	Thermal	Telemetry	Launch	Stray Light	Rank
HEO/	Very Good	Passive	Med. BW	Fair	Dark	1
Prometheus						
HEO / L2	Very Good	Passive	Low BW	Fair	Dark	2
	_					
HEO / GEO	Poor	Passive	24 hr	Fair	Dark	3
LEO / Equator	Lawaat Daga	Machanical	Lliab D\A/	Foir €	Corth China	4
LEO / Equator	Lowest Dose	Mechanical	High BW	Fair	Earth Shine	4
LEO / Polar	High at Poles	Mechanical	High BW	Excellent	Earth Shine	5
	riigirat roloo	Modifailloai	ingii bw	EXOCITORIC	Lartii Oillio	J
LEO / 28.5	Lowest Dose	Mechanical	High BW	Excellent	Earth Shine	6

Selected Lunar Assist "Prometheus" Orbit

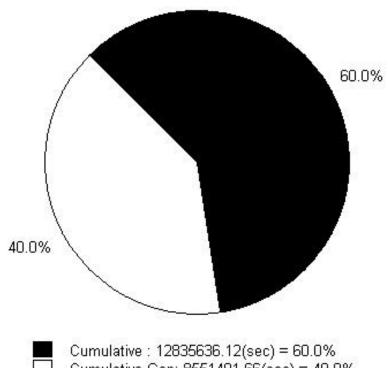
14 day orbit: 19Re Perigee/57Re Apogee


7 day orbit: 8Re Perigee/40Re Apogee

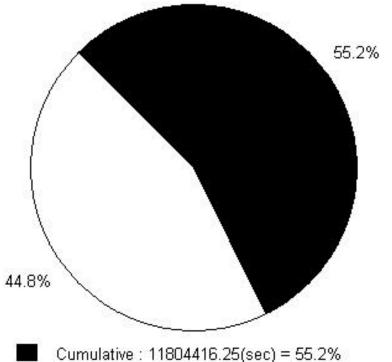
Telemetry for Prometheus Orbit

8

- High northern hemisphere orbit has excellent telemetry: ~50 Mbit/s for 19/57 orbit,
 >50 Mbit/s for 8/40 orbit
- 8 Gbit image every 200s + 40 Mbit/s (2:1 compression, no image stacking required)
- Data content is approx. 1/3 optical images, 1/3 spectroscopy, 1/3 IR photometry



Coverage Time

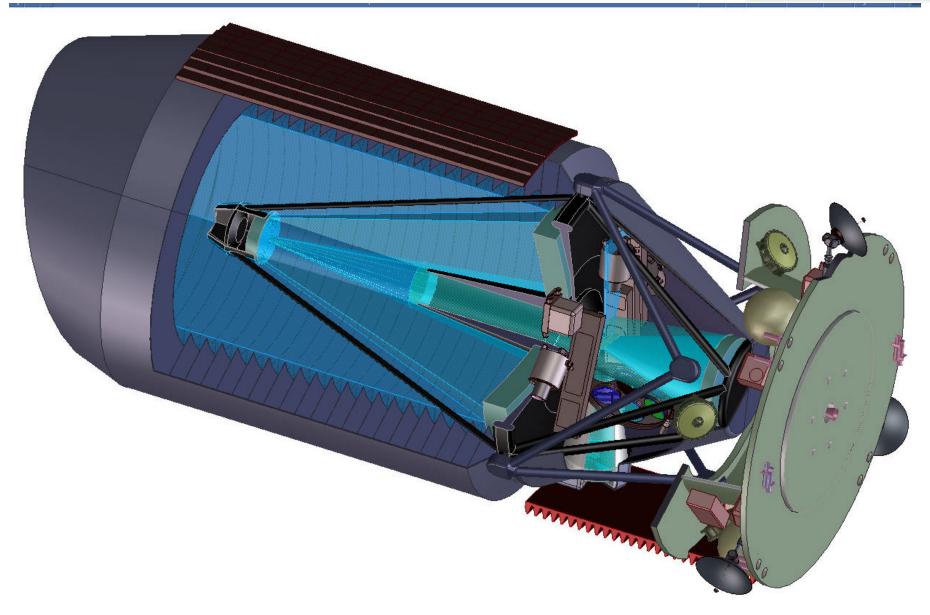

- Over the course of the three year lifetime
 - 60% is spent in Northern Hemisphere
 - 55.2% is spent in LOS contact with Bay Area

Chain-Chain2: Object Access - 20 Sep 2000 04:19:40

Cumulative Gap: 8551401.66(sec) = 40.0%

Chain-Chain1: Object Access - 20 Sep 2000 04:12:20

Cumulative Gap: 9582621.53(sec) = 44.8%

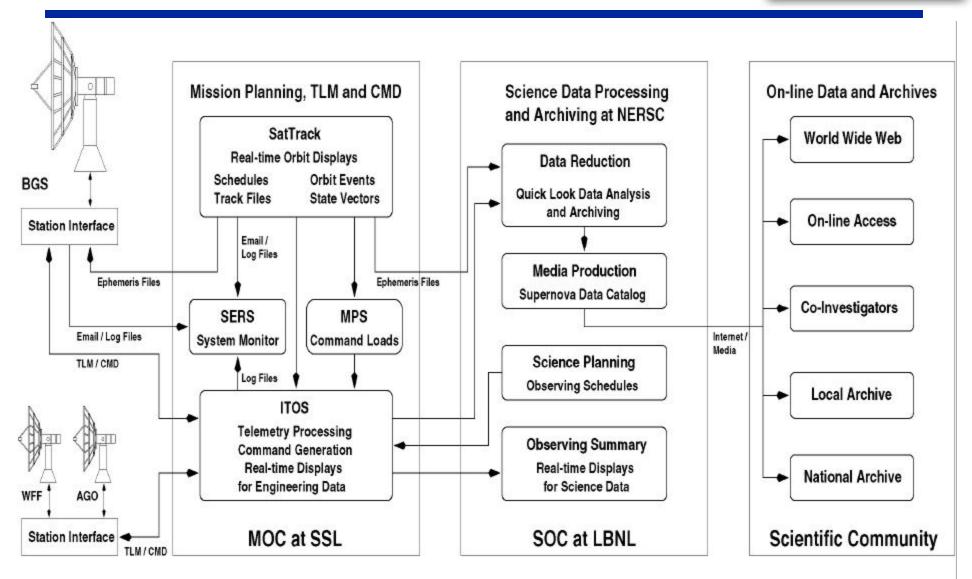

Spacecraft and Launch Vehicle

- Spacecraft Bus
 - Pair with industry
- Launch
 - Delta IV-M launch vehicle provides 2800 kg lift to our orbit
 - Early estimated weight of SNAP is 1800 kg

Cut away View of Structure

Mission Operations

Mission Operations Center (MOC) at Space Sciences Using Berkeley Ground Station


- Fully Automated System Tracks Multiple Spacecraft
 - 11 meter dish at Space Sciences Laboratory in operation for one year
- Science Operations Center (SOC) at Lawrence Berkeley Laboratory Built Around the National Energy Research Super Computer (NERSC)
- Multiple Terabytes Data Storage
- High Speed Links to CPU Farms & Supercomputers
- Intensive Processing Done on Supercomputers

Operations are Based on a Four Day Period

- Autonomous Operation of the Spacecraft
- Coincident Science Operations Center Review of Data with Build of Target List
- Upload Instrument Configuration for Next Period

SNAP Ground Data System

SNAP Ground Data System

Data Flow Layout

File: snap_gds.fig M.Bester, 19Nov99

Activities Planned for Conceptual Design Phase

- Optical Telescope Assembly optics design, trade studies, risk assessment and ICD's
- Instrument development
- Orbit analysis and study
- Structure design
- Thermal control system design
- Attitude Control System analysis and modeling
- Spacecraft systems refinement
- Integration and Test planning
- Launch vehicle selection and feasibility study
- Data system layout
- Reliability Analysis and redundancy study

Optical Telescope Assembly System

- OTA requirements development is well under way and will be continued during the Conceptual Design Phase
- Given the highly specialized skills involved, the detailed design and fabrication of the OTA will be done by an outside optics contractor
- Since design of the OTA is the starting point for the design of the entire observatory, and the procurement is a very long-lead activity, this will be a key development task during the Conceptual Design Phase

Instrument Systems

- Instrument system requirements have been the the focus of substantial study during the pre-concept period which will continue during the Conceptual Design Phase
- A number of technology development areas have been identified which will be discussed in detail in later presentations

Orbit Analysis and Modeling

- Orbit choice strongly impacts mission design
 - Eclipse time
 - Telemetry options
 - Thermal drivers
- "Prometheus" orbit first identified in NASA Goddard study
- Uses energy from moon to raise perigee
- Requires small hydrazine system on spacecraft to lower apogee
- Similar maneuvers are routinely done on interplanetary programs
- We will contract with a navigation group to do a detailed analysis to the orbit and to develop a navigation plan
- This will define requirements on
 - Launch vehicle
 - Propulsion system
 - Attitude Control System
 - Command and data system

Observatory Structure Design

- The structure drives every aspect of the observatory, particularly
 - Thermal control
 - Attitude Control
 - Testing and Integration
- Project team will develop and refine a detailed structure layout
- This will be used to generate a mechanical math model to support ACS as well as thermal and structural analysis

Observatory Thermal Control

19

- Heavily interacts with the structure and stray light baffling
- Strong thermal requirements on the OTA and instruments must be addressed
- Needed thermal baffles and structure may adversely affect ACS
- The thermal control task will include a preliminary layout and strategy for thermal control of the solar array
- This task is closely tied to every aspect of the observatory development, and is therefore a high priority

Attitude Control System Design and Modeling

- Control to better than the .03 arc-sec, 3 sigma SNAP requirement has been done on other spacecraft with more challenging structural properties (e.g. .005 arc-sec on Hubble)
- The ACS system interacts strongly with many other observatory systems
 - Structure
 - Thermal control
 - OTA (Tracker data from the OTA is needed by the ACS for fine attitude control, and reaction wheel rumble from the ACS may degrade OTA performance)
 - Navigation and orbit insertion
- Project will contract with an aerospace contractor to refine the ACS system design and construct a computer model of the system
- This will be maintained and updated thoughout the observatory development process

Spacecraft Systems

- A refined set of requirements on the spacecraft will be developed and documented during the Conceptual Design Phase
- The SNAP project plans to team with an aerospace industrial partner who will develop and supply the spacecraft portion of the observatory
- Since the observatory design is so strongly driven by the payload, we believe that costs will be minimized by refining the payload design before bringing the teaming partner on board
- The S/C strawman will be updated and refined as new data and requirements are developed from the structural, thermal, ACS, and navigation studies done during the Conceptual Design Phase
- We plan to issue an RFP and select a partner by the end of Phase B

Integration and Test Planning

- This activity will be lead by the OTA development team because the main driver for the task is the testing of the telescope and metering structure
- The plan is built around mirror and telescope test procedures
- The activity is then expanded to include all tests of the observatory and the instruments including environmental testing and calibration
- A key output of this task is the development of requirements and a plan to acquire necessary facilities and equipment

Command and Data System Layout and Redundancy Trade Studies

- As a part of the Conceptual Design Phase instrument development activities, data requirements from the instruments will be refined
- This will enable a refined layout of the data system to be done
- We will evaluate distributed vs. centralized architectures
- Different levels of functional and block redundancy will be evaluated and a policy regarding single point failures and redundancy will be developed